
ABSTRACT: A key element of successful development of new
soybean cultivars is availability of inexpensive and rapid meth-
ods for measurement of FA in seeds. Published research demon-
strated applicability of NIR spectroscopy for FA profiling in
oilseeds. The objectives of this study were to investigate the ap-
plicability of NIR spectroscopy for measurement of FA in whole
soybeans and compare performance of calibration methods.
Equations were developed using partial least squares (PLS), artifi-
cial neural networks (ANN), and support vector machines (SVM)
regression methods. Validation results demonstrated that (i) equa-
tions for total saturates had the highest predictive ability (r2 =
0.91–0.94) and were usable for quality assurance applications,
(ii) palmitic acid models (r2 = 0.80–0.84) were usable for certain
research applications, and (iii) equations for stearic (r2 =
0.49–0.68), oleic (r2 = 0.76–0.81), linoleic (r2 = 0.73–0.76), and
linolenic (r2 = 0.67–0.74) acids could be used for sample screen-
ing. The SVM models produced significantly more accurate pre-
dictions than those developed with PLS. ANN calibrations were
not different from the other two methods. Reduction in the num-
ber of calibration samples reduced predictive ability of all equa-
tions. The rate of performance degradation of SVM models with
sample reduction was the lowest. 
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Improvement of nutritional and/or functional properties of soy-
bean oil by modification of soy FA composition is a current ob-
jective of plant breeders (1). Several directions have been taken
to meet needs of different end users. Reduction of levels of
PUFA (particularly linolenic acid) and increase of oleic acid
concentration improves oxidative stability of soybean oil dur-
ing storage and processing. This avoids the hydrogenation
process that results in increased concentrations of unhealthy
trans-FA (2,3). In contrast, soybean varieties with high levels
of saturated FA (palmitic and stearic) can be important for pro-
duction of margarine and shortening (4,5). 

Regardless of the target, identification and tracking of traits
is a major element of plant breeding. Therefore, availability of
inexpensive and rapid methods for determination of FA com-
position of seed samples is a key element of success for devel-
opment of new grain cultivars.

Research papers published over the last decade demon-
strated applicability of NIR spectroscopy for FA profiling in
oilseeds. Calibration models for single rapeseeds developed by
Velasco et al. (6) demonstrated comparatively close relation-
ships between GLC measurements and those of NIR spec-
troscopy for oleic (r2 = 0.85, calibration set size n = 530) and
erucic (r2 = 0.88, n = 219) FA. However, no reliable correlation
existed for linoleic (r2 = 0.56, n = 530) and linolenic (r2 = 0.53,
n = 530) acids. An earlier experiment with bulk rapeseeds con-
ducted by Velasco and Becker (7) resulted in excellent cross-
validation results for oleic, linoleic, linolenic, and erucic acids
(r2 = 0.95–0.98, n = 220). In contrast, determination coeffi-
cients for palmitic, stearic, and eicosenoic acids in bulk rape-
seeds were not as high: 0.76, 0.62, and 0.69, respectively (all n
= 220). Studies by Sato et al. (8,9), Velasco et al. (10), and
Perez-Vich et al. (11) provide other examples of application of
NIR spectroscopy for determination of FA concentrations in
oil-bearing crops such as rapeseeds and sunflower seeds.

In soybeans, the predictive ability of NIR spectroscopy for
FA analysis is not well documented. Dyer and Feng (12) re-
ported SE of performance of 2.2% for oleic acid and 1.8% for
stearic acid calibrations for relative concentrations. Pazdernik
et al. (13) reported determination coefficients (validation) of
0.38–0.71 and 0.18–0.56 (n = 90) for five FA of ground and
whole soybean samples, respectively, using one NIR spectrom-
eter, FOSS NIRSystems 6500. The objectives of this study
were (i) to investigate further the applicability of readily avail-
able NIR units for analysis of FA composition in whole soy-
beans, and (ii) to compare one linear and two nonlinear cali-
bration methods for this application.

EXPERIMENTAL PROCEDURES

Raw data. A pool of approximately 1,400 soybean samples
(U.S. crops of 1991, 1993–1998, and 2003) with FA profiles
was used in this study. Whole soy samples were scanned on
three FOSS Infratec spectrometers, Infratec Grain Analyzers
1225, 1229, and 1241 (FOSS Group, www.foss.dk). A com-
mon calibration database consisting of 4,144 scans (≈1,400
samples times 3 spectrometers) was created. It was important
to focus on instrumentation already in use because there was a
short-term need to support breeding programs for reduced
linolenic acid. The Infratec was used because the majority of
commercial units currently availiable are Infratecs, and this in-
strument was as effective as any other unit in a previous amino
acid study (14). Relative concentrations of total saturates
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(palmitic plus stearic), palmitic (C16:0), stearic (C18:0), oleic
(C18:1), linoleic (C18:2), and linolenic (C18:3) acids were de-
termined in Department of Agronomy at Iowa State University
using the GC method described by Hammond (15). FA compo-
sition was expressed in relative concentrations (as opposed to
absolute) because that is what the marketplace currently re-
quires. 

Selection of samples and data preprocessing. To reduce
computational load and remove redundant information from
the plane of reference values, the original calibration database
was resampled and a new, approximately uniformly distributed
(based on FA concentrations) data subset was created for each
FA. All instruments received approximately equal representa-
tion in these new data sets. In addition, samples with abnor-
mally low or high variation of the second-derivative of the NIR
signal were considered spectral outliers (Fig. 1) and were ex-
cluded from further calculations. Reference data statistics for
the six final calibration/validation subsets are provided in Table
1. Seventy-five percent of the samples (randomly selected)
from each subset were used for calibration and the other 25%
were reserved for model validation. 

NIR spectra were corrected for scatter effects by estimating
their second derivative using Savitzky-Golay algorithm (5-

point window and 3rd-order polynomial). In addition, samples’
spectral and reference data (rows) were normalized to have
zero mean and unity SD.

Calibration procedures: Theory. One linear (partial least
squares) and two nonlinear (artificial neural networks and sup-
port vector machines) regression methods were used. A brief
description is provided below.

(i) Partial least squares (PLS). The principle behind the
PLS algorithm is to extract the important information from
variation of both optical (X) and reference chemical composi-
tion (y) data and compress it in a set of new independent latent
variables. The prediction equation becomes

ŷ = f(w, s) = w0 + w1s1 + w2s2 + ... + w(p-1)s(p-1) + wpsp [1]

where ŷ is predicted concentration, w is a vector of weights (re-
gression coefficients), s is a vector of new independent vari-
ables, and p is the number of latent variables. The elements of
s are defined as successive linear combinations of those origi-
nal variables (wavelengths) that have the greatest covariance
with optical data. The optimal number of latent variables is
usually found by minimizing cross-validation standard error.

(ii) Artificial neural networks (ANN). The ANN modeling
technique was inspired by attempts to imitate biological neural
systems that are capable of learning on examples. A neural net-
work is a set of interconnected neurons that establishes a rela-
tionship between optical properties of the material and its
chemical composition from a set of examples and then uses it
for future predictions. A trained network is a function described
by the number of hidden layers, the number of neurons at each
layer (with their transfer functions), and a set of weights (in-
cluding bias terms) assigned to links connecting the neurons.
For example, the equation for a neural network with D inputs,
K neurons in one hidden layer, and transfer (activation) func-
tion s in both output and hidden layers takes the form

[2]

where xi is ith input variable, wij is the weight of the connec-
tion from ith input to jth neuron of the hidden layer (number of
w-weights is equal to D for each hidden layer neuron); vj is the
weight of the connection from jth neuron of the hidden layer to
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FIG. 1. Detection of spectral outliers: Samples with variation of the sec-
ond derivative of log(1/T) beyond ±3 SD at 940 and 1020 nm were re-
moved from calibration and validation data sets. 

TABLE 1
Reference Data Statistics for Soybean Samples Used for Calibration and Model Validation

Correlation Number of Mean relative Concentration
FA with oila samplesb concentration, % range,% SD

Total saturates 0.00 721 16.4 5.3–37.3 7.46
Palmitic C16:0 0.00 616 11.0 2.8–32.3 6.94
Stearic C18:0 0.01 619 4.7 2.0–8.4 1.34
Oleic C18:1 0.15 771 27.7 11.8–51.0 8.71
Linoleic C18:2 0.03 758 51.4 32.4–69.4 7.27
Linolenic C18:3 0.33 976 6.5 1.2–13.3 3.01
aDetermination coefficient describing correlation of relative FA concentration with the total oil content.
bDifferent number of samples was required to create a uniformly distributed set for each FA. 



output neuron (number of v-weights is equal to K); bj is bias of
jth neuron of the hidden layer; b0 is bias of the output neuron;
s1 and s2 are functions defined, for example, as 

[3]

The main limiting factor of this method is a sufficient number
of training samples. More complicated networks require more
training examples to perform adequately during prediction.
When ANN is used with NIR spectral data where the number
of input variables (wavelengths) is usually large (on the order
of tens, hundreds, or even thousands) and the number of train-
ing samples is limited, it is practical to reduce the number of
dimensions of the input space. The optimal number of new in-
puts and number of neurons in hidden layer(s), as in case with
PLS, is found by minimizing cross-validation SE. For more de-
tails on the ANN method refer to Haykin (16), Borggaard (17),
and Næs et al. (18). 

(iii) Support vector machines (SVM). The SVM method is
based on principles of statistical learning theory developed by
Vapnik (19) and was intended for solving classification prob-
lems. Later, this technique was adapted for linear and nonlin-
ear function estimation (20).

In the SVM regression approach, data from the original
input space is transformed using a mapping function ϕ(x) into
a high-dimensional feature space where linear regression is
performed. This problem is formulated as constrained qua-
dratic optimization in high-dimensional space. The solution of
this problem using the Least Squares SVM regression (LS-
SVM) algorithm implemented by Suykens et al. (21) is given
by the model 

[4]

where vector x represents new sample, xk is kth training sam-
ple, αk is Lagrangian multiplier for kth training sample, b is
bias term, N is number of training samples, K(x, xk) is a kernel
function defined as 

K(x, xk)= ϕ(x)’ϕ(xk) [5]

An SVM model contains information about the relevance of
each training sample for calculation of ŷ and makes predictions
based on relative comparison of new (unknown) sample spec-
tra to the spectra of the k training samples. SVM training is
computationally intensive if k is large. More information on
SVM may be found in Vapnik et al. (20), Suykens et al. (21),
Smola and Scholkopf (22), and Cogdill and Dardenne (23). 

Calibration procedures: Application. (i) PLS. PLS_Toolbox
3.0 (Eigenvector Research Inc., www.eigenvector.com) for
MATLAB (The MathWorks Inc., www.mathworks.com) was
used for PLS modeling. The number of latent variables was se-
lected using 5-block cross-validation on the training set. (Note:
In 5-block cross-validation, the training set is divided into 5
equal blocks, 4 of which are used for training and 1 for valida-
tion during 5 training iterations.)

(ii) ANN. MATLAB/Neural Network Toolbox (The Math-
Works Inc., www.mathworks.com) was used for development
of ANN calibration models. Feedforward backpropagation net-
works were trained on 80% of the calibration samples avail-
able for each FA. The other 20% (randomly chosen) of the cal-
ibration samples were used as an early stopping set to prevent
overfitting during the training process. Input dimensionality
was reduced from 100 to 25 by taking every fourth wavelength
of the NIR spectra. (Note: A preliminary study demonstrated
that this simple resampling resulted in ANN calibrations supe-
rior to those developed on data compressed with principal com-
ponent analysis.) The best number of neurons in one hidden
layer was determined by 5-block cross-validation on the train-
ing set. A tangent sigmoid function and linear function were
used as activation functions of hidden layer neurons and an out-
put neuron, respectively.

(iii) LS-SVM. LS-SVMlab1.5 toolbox for MATLAB devel-
oped by Suykens et al. (21) was used for this part of the exper-
iment. Radial basis function (RBF) 

K(x, xk)= exp(−||x − xk||2/σ2) [6]

where σ2 is the RBF bandwidth, was used as a kernel function.
The best pair of complexity regularization parameter and RBF
bandwidth for every FA calibration model was determined by
5-block cross-validation on the training set (same training set
as for PLS and ANN calibration).

Comparison of calibration methods. Validation sets (25%
of samples not used for calibration) were applied to all calibra-
tion models to compute the following: coefficient of determi-
nation r2; SE of prediction corrected for bias, SEP; bias or
mean difference between NIR-predicted and reference concen-
trations d; and relative predictive determinant, RPD. Defini-
tions of these parameters can be found in Williams and Norris
(24).

To establish the relative significance of the calibration meth-
ods, RPD coefficients that characterize overall predictive abil-
ity of calibrations were compared using ANOVA. In addition,
the effect of calibration set size on performance of the regres-
sion methods was studied. Calibration sets for total saturated
(palmitic plus stearic) and linolenic FA were reduced to smaller
data sets that ranged from 50 to 5% of the original size (for ex-
ample, calibrations for saturates were developed on sets con-
sisting of 271, 181, 136, 109, 91, 78, 68, 61, 55, 50, 46, 37, 31,
and 28 samples). Models for the two constituents developed
with the three regression methods on all calibration sets were
tested on the same validation sets.

RESULTS AND DISCUSSION

Overall results. Validation results of calibration models devel-
oped with PLS, ANN, and LS-SVM regression methods for six
FA in whole soybeans are shown in Table 2 (actual vs. pre-
dicted concentration plots for saturates and linolenic acid mod-
els are provided in Fig. 2). Determination coefficients (r2) of
models ranged from 0.49 to 0.68 for stearic acid and from 0.91
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to 0.94 for total saturates. In terms of RPD (RPD = SDy /SEP,
where SDy is SD of reference values in the test set), predictive
ability varied from 1.4 to 1.8 for stearic acid and from 3.3 to
4.2 for total saturates. Based on guidelines for interpretation of
r2 coefficients outlined by Williams and Norris (24), NIR cali-
bration equations for saturated FA were usable for quality as-
surance applications, whereas those for palmitic acid were “us-
able with caution for most applications, including research.”
Models for the other four FA had lower predictive power. How-
ever, they could still be used for sample screening, which is an
important task in seed breeding programs. Validation results
also demonstrated that predictive ability of NIR calibration
equations was not dependent on correlation between total oil
and relative FA concentration (refer to Table 1 for determina-
tion coefficients describing relationship of individual FA with
total oil content). For example, validation r2 values of NIR cal-
ibration models (PLS, ANN, and LS-SVM) for saturates were
high (0.91–0.94), whereas correlation between oil content and
saturates was practically zero (0.003). In addition, predictive
ability of the calibration models was independent of error of

the reference GC method. This suggests that NIR spectroscopy
and calibration methods used in this study could have using in-
formation from individual FA absorption bands, not from wider
total fat absorption bands.

Most of the variation (79%) in predictive ability of NIR cal-
ibration models could be explained by the SD of reference data
in calibration sets (graphs of r2 or RPD vs. SD of reference data
are not shown). Thus, the introduction of a larger number of
samples with extremely low and high values of stearic and
linolenic acids into corresponding calibration data sets may im-
prove the predictive ability of NIR spectroscopy for these con-
stituents. 

A previous study by Pazdernik et al. (13) on the applicabil-
ity of NIR spectroscopy for determination of FA composition
in soybeans (NIRSystems 6500 spectrometer and PLS regres-
sion) resulted in validation r2 values of 0.38 (palmitic), 0.66
(stearic), 0.68 (oleic), 0.70 (linoleic), and 0.71 (linolenic) for
models developed on ground samples and 0.18 (palmitic), 0.54
(stearic), 0.38 (oleic), 0.52 (linoleic), and 0.56 (linolenic) for
those of the whole-seed samples. The r2 coefficients of our ex-
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TABLE 2
Validation Statistics of PLS, ANN, and LS-SVM Calibration Equations Developed for Estimation
of Relative Fatty Acid Composition in Whole Soybeans by FOSS Infratec

Test statisticsa PLS ANN
and model calibration calibration LS-SVM calibration

FA parametersb model model model

Saturates (C16:0 + C18:0) r2 0.91 0.92 0.94
SEP 2.23 2.13 1.80
d 0.01 −0.31 −0.02
RPD 3.3 3.5 4.2
Model param. 16 25/3 1413/7450

Palmitic (C16:0) r2 0.80 0.84 0.82
SEP 3.16 2.79 2.94
d −0.33 −0.44 −0.39
RPD 2.2 2.5 2.4
Model param. 15 25/4 8154/38888

Stearic (C18:0) r2 0.49 0.64 0.68
SEP 0.97 0.82 0.77
d −0.08 −0.01 −0.06
RPD 1.4 1.7 1.8
Model param. 9 25/3 26/208

Oleic (C18:1) r2 0.76 0.80 0.81
SEP 4.27 3.93 3.88
d −0.63 −0.63 −0.28
RPD 2.1 2.2 2.3
Model param. 9 25/3 19/236

Linoleic (C18:2) r2 0.73 0.74 0.76
SEP 3.77 3.67 3.56
d 0.18 0.19 2.27
RPD 1.9 2.0 2.0
Model param. 9 25/3 117/1348

Linolenic (C18:3) r2 0.67 0.73 0.74
SEP 1.74 1.56 1.53
d −0.09 −0.02 −0.13
RPD 1.7 1.9 2.0
Model param. 13 25/3 32/397

ar2 is determination coefficient, SEP is SE of prediction corrected for bias, d is bias, RPD is relative predictive determinant,
PLS is partial least squares, ANN is artifical neural networks, and LS-SVM is Least Squares support vector machines. 
bModel parameters provide number of latent variables for PLS, number of inputs and neurons in a hidden layer for ANN,
and radial basis function bandwidth and complexity regularization parameter for LS-SVM.



periment (Table 2) were higher than both sets of results re-
ported by Pazdernik et al., which suggests that satisfactory ac-
curacy of NIR predictions may be achieved without grinding
the seed samples. 

Comparison of calibration methods. Interpretation and com-
parison of the validation results in the previous section was
based on r2 values; however, because of the mathematical rela-
tionship between r2 and RPD, the same conclusions regarding
predictive ability of calibration models could be drawn from
analysis of RPD values. For the benefit of RPD-accustomed re-
searchers, further comparison of calibration methods is based
on the aforementioned statistic.

Validation RPD ratios for 18 calibration models are illus-
trated in Figure 3. Visual analysis of the bar chart suggested su-

perior performance of nonlinear regression methods. In order
to confirm this, ANOVA modeling of the form 

RPD = FA + M + error [7]

where FA is the FA factor and M is the calibration method fac-
tor, was performed. The interaction FA*M was used as the
error term. Mean values of M factor were compared using
Tukey’s test at a = 0.05. The results of statistical analysis
demonstrated that both FA and M factors had significant effect
on the RPD coefficient (P < 0.0001 and P = 0.017, respec-
tively). The mean RPD of LS-SVM equations (mean = 2.4, SE
of mean based on six replicates = 0.064) was significantly bet-
ter than that of PLS equations (mean = 2.1, SE = 0.064). How-
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FIG. 2. Actual vs. predicted concentration plots for saturates and linolenic FA calibrations.
Models were tested on sets of 180 (saturates) and 244 (linolenic) samples. The solid line on
each plot represents the regression line.



ever, mean RPD of ANN calibrations (mean = 2.3, SE = 0.064)
was not significantly different from the other two methods.

Calibration models for saturated and linolenic FA were de-
veloped using reduced calibration data sets as described in the
last paragraph of the Experimental Procedures section. The re-
sults, RPD coefficient as a function of calibration set size, are
shown in Figure 4. As expected, the predictive ability of cali-

bration equations dropped as the number of calibration (train-
ing) samples decreased, regardless of the regression method or
type of predicted constituent. However, the rate of performance
degradation was dependent on calibration method and con-
stituent. ANN models had the highest rate of performance
degradation for both saturated and linolenic FA. These equa-
tions became unusable (RPD < 1.4 or r2 < 0.5) when they were
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FIG. 3. Validation relative predictive determinant (RPD) of partial least squares (PLS), artificial
neural networks (ANN), and the Least Square support vector machines (LS-SVM) calibration
equations developed for determination of FA composition in whole soybeans by FOSS Infratec
spectrometers.

FIG. 4. Validation RPD of PLS, ANN, and LS-SVM equations as a function of calibration set
size for saturated and linolenic FA in soybeans. For abbreviations see Figure 3.



developed using calibration sets of fewer than 70 samples for
saturates and 120 samples for linolenic acids. LS-SVM equa-
tions for saturates displayed the best tolerance to reduction of
number of calibration samples. LS-SVM calibrations for
linolenic acid demonstrated behavior similar to PLS and ANN.
Another important observation about saturates models was that
variation of RPD of LS-SVM equations developed on calibra-
tion sets of fewer than 100–150 samples was higher than that
of PLS models. This suggests a strong sensitivity of this non-
linear regression method to outliers and/or unusual samples in
small calibration sets. 
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